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Abstract

The paper presents the key idea behind Asymptotic Safety in gravity
and its application to the inflationary models. It is discussed, that AS
inflation is possible, by the RG improvement of the Starobinsky model at
the level of the Lagrangian. The Higgs inflation and AS gauge-Yukawa
theories are addressed in this context.

1 Introduction
Cosmological inflation is one of the most established theories, describing the
early Universe. Inflation has brought answers to numerous questions in classical
cosmology, such as observed homogeneity and isotropy of the Universe. Remark-
ably, quantum fluctuations present at the beginning of the inflation have been
enhanced to a classical level and are directly observed as Cosmic Microwave
Background radiation, so far the theory is consistent with the data. However,
the modern approach to inflation creates many possible models, of which one
(if any) is correct. Novel theoretical tools are necessary to narrow down the
possible scenarios.
In the paper, we review inflationary models through the lens of Asymptotic
safety, which as noticed by Steven Weinberg [4] gives a natural rise for the in-
flation, by including all possible truncations of Riemann curvature tensor in the
action.
The paper is organized as follows, in Sec. 2 a brief comment on the relevance
of the inflation is given, with the references to the literature. Sec. 3 introduces
the main aspects of Asymptotic safety, Renormalization Group flow, and fixed
points. Sec. 4 consists of two appealing models, currently with an agreement
with the experimental data. Namely, Starobinsky inflation, in which the in-
flationary potential originates from a quadratic term in the action and Higgs
particle inflation, which considers the Higgs particle as the Inflaton. Sec. 5 in

∗In order corresponding to the section written by the author.
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detail describes RG flow in the gauge-Yukawa theory with SU(Nc) gauge fields.
The stability of the found fixed points is discussed. In Sec. 6 Weinberg’s original
idea is explained, as well as the modern realization of Alessia Platania. In Ap-
pendix A Jordan and Einstein frame has been introduced. Appendix B consists
of the explicit form of the potential of previously described g-Y Asymptotically
Safe theory.

2 Inflation theory
Current observations can reach no further in the past than to the surface of
the last scattering where the cosmic microwave background comes from. The
relic radiation is an extremely useful source of information about the era of
recombination as well as a tool discarding some of the early universe models.

The standard big-bang cosmologies’ conditions miss some of the observa-
tional features of the universe. The most meaningful ones are the flatness, ho-
mogeneity, and primordial monopole problems [14] [13]. Under a certain initial
condition, the inflation theory is the one enabling avoidance of this inconsis-
tency.

Since the 80s [14] the theory has been modified and tested multiple times.
The inflation mechanism is caused by the scalar potential field, leading to par-
ticle productions and exponential expansion of the universe as the initial false
vacuum gives up its energy, cooling the space. The potential rolls down, creating
the particles.

Some of the models predict a bouncing universe and some of the initial
conditions may lead to eternal inflation. In this case, the expansion occurs in
various regions of the universe differently, which can be troublesome as we don’t
observe any evidence of this process taking place.

3 Asymptotic safety
The attempts to quantize general relativity based on Einstein-Hilbert action
result in perturbatively nonrenormalizable theory. This prompted researchers
to treat gravity as an effective field theory. In this scheme, the predictive power
of the theory is limited because the description of gravity at trans-Planckian
scales requires fixing infinitely many coupling constants from experiments [1].
The idea of asymptotic safety was introduced by Stephen Weinberg in 1978 as
a UV completion of the quantum theory of gravity. The behavior of an asymp-
totically safe theory is characterized by scale invariance in the high-momentum
regime. The realization of scale invariance requires the existence of a nontrivial
renormalization group fixed point for dimensionless couplings. Dimensionless
couplings gi are obtained from dimensionful ones with canonical dimension dḡi
by multiplication by suitable power of the renormalization group scale k:

gi(k) = ḡi(k)k−dḡi .
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The fixed point of the theory g∗ is a zero of all beta functions for couplings gi:

βgi = k∂kgi(k) = 0 for gi(k) = gi∗.

The trajectories of the RG flow can be visualized in the theory space. It is
spanned by field monomials of the theory; each point of the space is associated
with a possible action, which is a linear combination of the field monomials. The
existence of the RG fixed point results in universal predictions for low-energy
physics. It determines relations between couplings and thus describes the loca-
tion of the UV-critical surface. The UV-critical surface consists of all couplings
along which the trajectories emanate from the fixed point in the infrared (IR)
direction with a diminishing scale k. These couplings correspond to relevant di-
rections; they are UV-attractive as they reach the fixed point at a high-energy
scale. The relevant directions are the free parameters of the theory. The IR-
attractive couplings (which are UV-repulsive) constitute irrelevant directions as
they are pulled automatically towards the fixed point [2]. The dimensionality
of the UV-critical surface is equal to the number of relevant directions. Figure
1 presents the fixed point with an associated UV-critical surface in the theory
space.

Figure 1: Fixed point (light purple dot) with corresponding UV-critical surface
(purple) in the theory space. Teal arrows show RG trajectories starting off the
surface pulled toward the fixed point along the irrelevant direction until the
relevant (IR-repulsive) directions start to drive the flow away from the fixed
point. Linearized flow is visualized by black (relevant directions) and green
(irrelevant directions) arrows [2].

Asymptotic safety imposes the condition that the theory describing nature
lies on the UV-critical surface of the theory space. This condition implies that
the couplings of the theory are finite at high-energy. Furthermore, to fix the
trajectory uniquely one has to determine free parameters from experiments[1].
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The number of parameters equals the dimensionality of the UV-critical surface;
the finite dimensionality of the critical surface results in a finite number of
experiments needed and restores the predictivity of the theory. The difference
between asymptotic safety and asymptotic freedom present in e.g. QCD is that
asymptotic freedom manifests in the asymptotic weakening of the coupling in
the high-energy limit. Asymptotic safety, besides stabilizing behavior of the
theory at high energy by scale invariance, generates predictions in low-energy
physics by relations between relevant and irrelevant directions.

In order to determine the UV-attractive directions one has to investigate the
linearized flow about the fixed point at g = g∗:

βgi =
∑
j

∂βgi
∂gj

∣∣∣
g=g∗

(gj − gj∗) +O(gj − gj∗)2.

The solution of the equation above can be written in the form:

gi(k) = gi∗ +
∑
I

cIV
I
i

(
k

k0

)−θI
,

where: cI -constants of integration, θI are the critical exponents; they are related
to eigenvalues of stability matrixMij :

θI = −eigMij = −eig∂βgi
∂gj

∣∣
g=g∗

while VI are corresponding eigenvectors[2].
One of the powerful methods for examining RG flow in the context of asymp-

totic safety is the functional renormalization group (FRG) study for gravita-
tional effective average action (EAA) Γk. The EEA scale dependence is de-
scribed by the Wetterich equation (also called the FRG equation). In practical
applications, the theory space is often truncated. For the Einstein-Hilbert trun-
cation, the effective average action contains scalar curvature, the cosmological
constant, gauge fixing, and gauge ghost term. It has been shown that there
exist Gaussian (asymptotically free theory) and a non-Gaussian fixed point in
such a theory. Figure 2 shows the corresponding RG flow.
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Figure 2: Visualization of the RG Einstein-Hilbert flow. The plot shows Gaus-
sian fixed point in g = 0, λ = 0 and a non-Gaussian fixed point.

Numerous quantum theories of gravitation, such as R2 gravity, Weyl ten-
sor squared gravity, and f(R) gravity has been confirmed to contain the non-
Gaussian fixed point.

4 (Semi)successful inflationary models

4.1 Starobinsky inflation
In 1980 Starobisky [7] proposed a model where a pure modified gravitational
action can cause non-singular evolution of the Universe, namely:

S =
1

2

∫ √
|g|d4x

(
M2
pR+

1

6M2
R2

)
,

where M is some ”mass” parameter, with value taken to fit the Planck data.
Now we will rewrite the action into equivalent linear representation:

Sl =
1

2
=

1

2

∫ √
|g|d4x

(
M2
p

2
R+

1

M
Rψ − 3ψ2

)
,

if we write equations of motion for ψ we obtain:

1

M
R = 6ψ.

Then if we use a following conformal transformation:

gµν → e−
√

2/3φ/Mpgµν =

(
1 +

2ψ

MM2
p

)
gµν
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we get action with scalar field coupled to gravity:

S =
1

2

∫
d4x
√
|g|

(
M2
p

2
R+

1

2
∂µ∂

µφ− 3

4
M4
pM

2
(

1− e−
√

2/3φ/Mp

))
.

R2 Term gives equivalent solutions as the evolution of scalar field with expo-
nential type potential. According to Planck data, Starobinsky model and its
descendants are the main class of models which has correct tensor to scalar
ratio and scalar-tilt:

ns − 1 ≈ − 2

N
r ≈ 12

N2
,

with N being the number of e-folds.

4.2 Higgs particle as Inflaton
The inflation scenario requires a scalar field to drive it. We can assume a
fictitious, additional to the ones we know from particle physics, scalar field to
do the job, but this will cause a lot of problems: how to quantize this field, how
will it couple to other fields from SM (reheating), what other properties should
it have. So far we recognized only one fundamental scalar field, namely the
Higgs field. Then arises a question, whether Higgs can serve as Inflaton. The
answer is yes, moreover the spectral index and tensor perturbations amplitude
for SM are in good agreement with the experiment and these parameters are
in 15 correspondence to WMAP-3 data. In this paragraph, we will follow the
steps described in [8].
Let us start with Standard Model Lagrangian with non-minimal coupling to
gravity:

L = LSM −
M2

2
R− ξH†HR

We will consider only ξ such that: 1 �
√
ξ � 1017 since this will simplify

formulas and in which: M 'MP . Let us ignore gauge couplings and set unitary
gauge: H = h/

√
2eiθ

SH =

∫
d4x
√
|g|
[
−R+

∂µh∂
µh

2
+
h2∂µθ∂

µθ

2
− λ

4
(h2 − v2)2

]
We will change the frame. To obtain this we will use a conformal factor:

Ω2 = 1 +
ξh2

M2
P

so the transformed metric is:

gEµν = Ω2gJµν
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Moreover, if we use a convenient new scalar field such that

dχ

dh
=

√
Ω2 + 6ξ2h2/M2

P

Ω4
(1)

We arrive at the action in the Einstein frame:

S =

∫
d4x
√
gE

[
−M

2
P

2
RE +

∂µχ∂
µχ

2
− U(χ)

]
,

where

U(χ) =
1

Ω4

λ

4
(h(χ)2 − v2)2

For small field values: h ' χ and Ω2 ' 1 for both fields potential has the same
initial values. However, it is not so for h � MP /

√
ξ. In this limit one can solve

(1) and get:

h ' MP√
ξ

exp

(
χ√

6MP

)
We obtain exponentially flat potential:

U(χ) =
λM4

P√
ξ

(
1 + exp

(
− 2χ√

6MP

))−2

We will analyse this potential using slow - roll approximation. We can calculate
slow-roll parameters, in the limit h2 � M2

P /xi � v2 as:

ε =
M2
P

2

(
dU/dχ

U

)
' 4M4

P

3ξ2h4
,

η = M2
P

(
d2U/d2χ

U

)
' 4M4

P

3ξh2
,

Slow roll ends when ε ' 1, so hend ' 1.07MP /
√
ξ. The number of e-foldings is

given by the formula:

N =

∫
1

M2
P

U

dU/dh

(
dχ

dh

)2

dh ' 6

8

h2

M2
P /ξ

For all values
√
ξ � 1017, the v parameter doesn’t appear anywhere so inflation

stage is not affected by its value. one obtains a familiar relation:

n ' 1− 2η ' 1− 2/N ' 0.97

r = 16ε ' 12/N2 ' 0.0033,
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where N ' 60 Inserting into COBE normalisation [9]: U/ε = (0.027MP )4 and
with NCOBE ' 62, we obtain that:

ξ '
√
λ

3

NCOBE
0.0272

' 49000
√
λ,

so for λ ∼ O(1), ξ ' 49000 is the value for which Higgs scenario fit the data.
One have to keep in mind that both those models do not have UV completion
and have issues with unitarity (ξ ≈ 105). Now we will try to explore alternative
solutions which indeed have UV completion and lead to smaller ξ. We will focus
on asymptotically safe theories, which guaranty that such models are proper on
every scale. They are as well a conformal field theory around fixed point, so
it gives us a natural image of almost invariant spectrum in respect to scaling
(ns ≈ 1).

5 Inflation from Asymptotically Safe Theories

5.1 Motivation
It seems very natural for a theory underlying the inflation to be fundamentally
well-defined, including arbitrary short scales. Fortunately, such a nontrivial
example was proposed in [15, 16]. Here we briefly summarize the content of
them, describe the introduced model and its properties. Next, following [17],
we consider it as a mechanism driving the inflation and compare it with physical
parameters measured via CMB observations [18].

5.2 Asymptotic safety guaranteed
The UV fixed points (FP) are central for QFT theories to be fundamental and
predictive up to the highest energies. Even not Asymptotically Free (AF) or
power-counting renormalizable theories may turn out to be predictive, provided
that they develop an interacting UV FP. Asymptotic safety (AS) guarantees UV
finite matter-gauge theories even when AF or supersymmetry is not present.
The idea is that AS UV FP should act as an anchor for the RG evolution
of couplings so that they approach high-energy limit along well-defined RG
trajectories (without divergencies such as Landau poles). Examples of UV FPs
arising for gravitons, fermions, gluons, and scalar fields are given. The paper
deals with the so-called Gauge-Yukawa (g-Y) theory with SU(NC) gauge fields,
NF flavors of fermions and NF ×NF complex matrix scalar field H (uncharged
under the gauge). The Lagrangian L reads

L =LYM + LF + LY + LH + LU + LV

=− 1

2
TrFµνFµν + Tr(Qi /DQ) + yTr(QLHQR +QRH

†QL) + Tr(∂µH
†∂µH)

− uTr(H†H)2 − v(TrH†H)2
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where
Q = QL +QR, QL/R =

1

2
(1± γ5)Q.

The trace is taken over color and flavor. The ratio δ = NF /NC-11/2 plays the
role of a perturbative control parameter and is later used in power series ex-
pansions. The analysis is performed in the large-N (Veneziano) limit, however,
some remarks about finite N setting are given at the end of the paper. The RG
flow concerns four normalized couplings αi, where i = g, y, h, v, of the couplings
g, y, u, v respectively. The analysis up to the leading order (LO), next-to-leading
order (NLO) and next-to-next-to-leading order (NNLO) is performed. Within
the analysis, the authors look at the RG flows and identify fixed points, with
their types. The eigenvalues and eigenvectors of the stability matrix correspond-
ing to the linearisation of RG flow in the vicinity of the UV fixed point are given.
The theory develops a Gaussian FP which remains at zero in all orders. The
dynamics of αv largely decouples from the remaining couplings. The theory
develops AS UV FP in the g-Y system at the NLO level, which bifurcates into
several UV FPs at NNLO level, due to scalar fluctuations. In total, there are
three non-Gaussian FPs (FP1, FP2, FP3), first two of which are completely
(i.e. in all four couplings) AS, and in the third point the β-function of the
doubletrace scalar coupling does not vanish. The separation of eigenvalues to
relevant and irrelevant in all three points is given. To sum up, the theory is
renormalizable within the perturbative theory (PT). It becomes AF in gauge
sector for δ < 0 and QED-like for δ > 0. It develops an exact interacting UV
FP which is strictly controlled by the PT for 0 < δ � 1.

Then, the authors look at the UV critical surface, which describes the short-
distance behavior of the theory. The analysis of anomalous dimensions and
mass-terms is given. Finally, there is a discussion of the feasibility of results
and additional observations using different arguments. First of them is sta-
bility which manifests itself in the fact that the leading coefficients of FPs α∗g
and α∗y remain numerically unchanged when passing from NLO to NNLO. This
also holds for universal eigenvalues. Moreover, all couplings of the theory be-
come fully dynamic at NNLO. Crucially, at N3LO there are no new consistency
conditions, only higher-order corrections. The second argument concerns the
Weyl consistency conditions. Third - the universality, means that an interact-
ing UV FP arises universally, i.e. irrespectively of the regularisation scheme.
This can be seen from the fact that FP in the gauge sector is invariant to LO
under perturbative (non-singular) reparametrizations. Next, we have operator
ordering and the existence of a gap ∆ (of the eigenvalue spectrum). Note that
the canonical power counting, unlike in AF theories, cannot be used to deter-
mine which invariants will become relevant. The residual interactions, even if
perturbatively weak, control the scaling of invariants which classically have a
vanishing canonical mass dimension and can change these into relevant or irrele-
vant ones Classically we have the fourfold degeneracy of the marginal invariants
and ∆ = 0. Residual interactions at the UV FP lift the fourfold degeneracy
amongst the classically marginal couplings and the gap arises. Net we have the
unitarity condition - an important constraint on quantum corrections that re-
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lates to the scaling dimension of primary fields such as scalar fields themselves.
For a quantum theory to be compatible with unitarity, it is required that the
scaling dimension must be larger than unity, i.e. ∆H > 1. This behavior can
be observed in the paper’s result. Finally, the (lack of) triviality is discussed.
It turns out that at UV FPs triviality for all three types of fields is evaded
through residual interactions. This suggests that the scalar degrees of freedom
may indeed be seen as elementary. The avoidance of triviality in the scalar
sector is closely linked to the presence of gauge fields, be they AF or AS. It is
worth noting that an interacting FP in the scalar sector would not arise without
an interacting FP for the Yukawa coupling. Without gauge fields, the fermion-
boson subsystem does not generate an interacting UV FP, and couplings cannot
reach the GFP in the UV. With AF GFs (i.e. for small ε < 0), the UV FP for
the Yukawa coupling remains the trivial one. A detailed inspection then shows
that complete AF follows, albeit under certain constraints on the parameters.
With AS GFs (i.e. for small ε > 0), complete AS is achieved at two interacting
UV FPs. Triviality is evaded in the large-N limit with and without AF in the
gauge sector. AF in the gauge sector had to be given up for the Yukawa and
scalar sectors to develop interacting UV FPs.

5.3 Vacuum stability of asymptotically safe gauge-Yukawa
theories

In the first paper, during the analysis of the RG flow, it was assumed that the
vacuum of the scalar potential stays at the origin, such that all global symmetries
are preserved along the flow. The main goal of the second paper is to justify
this assumption.
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Figure 3: UP: the phase diagram of the g-Y theory in the vicinity of the UV FP
at NNLO accuracy with ε = 0.05, projected onto the (αg, αy) plane (left panel)
and the (αg, αh) plane (right panel) Down: projection of the phase diagram of
the g-Y theory onto the subspace of scalar couplings with (αg, αy) taking values
on the UV-IR connecting separatrix (left panel: αg ≈ 0.999α∗g, right panel:
αg ≈ 0.397α∗g). Red (black) dots indicate the trajectory which connect the
physical FP1 (unphysical FP2) with the GFP. In the scalar subsystem where
the RG flow is parametrically faster by 1/δ, the separatrices appear as pseudo
FPs.

.

The analysis concentrates on the separatrix which connects UV FP with
GFP. In coincides with UV critical surface close to FP. It is characterized by
locations of FPs and eigendirections. Out of four eigenvalues at the FP, three
are irrelevant (positive) and one is relevant (negative). The irrelevant eigenval-
ues are of order δ and the relevant one is of order δ2. Thus, the velocity of RG
flow along the separatrix is ∝ δ2, and towards it is ∝ δ. Hence, for small δ, the
flow goes effectively along the separatrix. The relations between couplings on
the separatrix are calculated and the effective RG running of αg along the sep-
aratrices are found. Then, there is a discussion about the characteristic energy
scales and, so-called, dimensional transmutation. The figure of RG running of
all couplings along the UV-IR connecting separatrix in the NLO approximation
is given. It depicts the cross-over (in IR regime the couplings converge are close
to each other, i.e. to zero; in UV regime they stabilize at different (non-zero)
levels) which takes place at RG-invariant scale. Then the stability analysis be-
gins. It involves classical and quantum moduli spaces. The classical moduli
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space for the potential

V = uTr(H†H)2 + v(TrH†H)2

is just the set of flat directions. The analysis shows that FP1 is stable, FP2
is unstable and FP3 is unstable for infinite NF and possibly stable for finite
NF . Later, the authors perform the analysis of quantum moduli space. This
involves e.g. the notion of the Coleman-Weinberg’s potential. An enhancement
of the quantum effective potential over the classical one is presented. The paper
concludes that the high-energy behavior is AS, controlled by an exact interacting
UV FP. RG trajectories emanating from the fixed point relate to well-defined,
finite, and predictive local QFTs at all energies, despite no AF present. The
FP occurs parametrically close to the Gaussian and admits rigorous control
within PT The vacuum of UV safe g-Y theories is stable, (classically and QM),
even though AF is absent. The main quantum corrections to Veff arise due
to the anomalous dimension of the scalars (non-vanishing value even at the
highest energies, unlike in AF theories). The RG running of couplings away
from the FP is a subleading effect for the Veff , provided field values remain
large compared to Λc (i.e. the characteristic energy scale) of the theory. The
absence of classically flat directions of the FP potential thus entails quantum
stability. Proof of vacuum stability can straightforwardly be exported to other
gauge theories with interacting UV FPs. They investigated massless theories in
the Veneziano limit where the number of fields is very large and UV interactions
are weak. Continuity in the number of fields indicates that the vacuum remains
stable even for finitely many fields as long as PT remains a good approximation.

5.4 Gravity and inflation
Asymptotically, potential of such an AS theory, derived in appendix B.1, can
be expressed as:

lim
φ/µ0→∞

ViUVFP =
λ∗φ

4

4N2
F

(
φ

µ0

)− 16
19 δ

.

Using δ > 0 we can control the hight of the potential and thus the amplitude
of scalar perturbations, overall coupling depends only on the number of colors
and flavors. From now we assume µ0 = 10−3MP . In our case, action in Jordan
frame is given by:

SJ =

∫
d4x
√
−g
(
−M

2 + ξφ2

M2
P

R+
gµν

2
∂µφ∂νφ− ViUVFP

)
,

where ξ is coupling constant in general case, including non-minimal coupling.
Now we can transform our action to Einstein frame as explained in the appendix
A:

Ω2 =
M2 + ξφ2

M2
P

, U = ViUVFP/Ω
4, φ→ χ.
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From now we will assumeM = MP . Let us recall canonical definition of slow-roll
parameters and the end-of-inflation conditions:

ε =
M2
P

2

(
dU/dχ

U

)2

, ε(φend) = 1,

η = M2
P

d2U/dχ2

U
, |η(φend)| = 1,

N =
1

M2
P

∫ χini

χend

U

dU/dχ
dχ = 60 - number of e-folds.

Scalar perturbation parameters estimated eg. in Planck’15 [18] can be expressed
using slow-roll parameters in a following way:

As =
U

24π2M4
P ε
− amplitude,

ns =1 + 2η − 6ε− tilt,
r =16ε− tensor-to-scalar ratio.

5.5 Minimal coupling
At first let us assume ξ = 0, so called minimal coupling case.

φini =

√(
4− 16

19
δ

)(
3− 16

19
δ

)
MP

φend =

√(
4− 16

19
δ

)(
2N + 3− 16

19
δ

)
MP

ns =
2N − 3

2N + 3− 16
19δ

= 0.951 + 0.00651δ +O
(
δ2
)

r =
32
(
1− 4

19δ
)

2N + 3− 16
19δ

= 0.260− 0.0530δ +O
(
δ2
)

After comparison of our results with Planck experiment (Fig.4), we can clearly
see, that our parameter δ has to be around 0.8 to fit in reality. Although this
is still in theory’s perturbational region, we have to consider higher order terms
(B.2 Fig.9).
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Figure 4: Theoretical predictions for different δ values computed with complete
expression for potential [17][18].

We can now use the last parameter As to determine exact number of theory’s
flavours and colours (B.2 Fig.10).

As =
λ∗

48π2
(
4− 16

19δ
)2
N2
F

(
φini
MP

)6− 16
19 δ
(
µ0

MP

) 16
19 δ

≈ 105δ

N2
F

(
µ0

MP

) 16
19 δ

= 2.2 · 10−9

5.6 Non-minimal coupling
Now we will consider coupling constant ξ > 0. The potential shown at Fig.5
allows also for an undesirable behaviour associated with the red ball, probably
leading to eternal inflation. Here we will only consider the green one. For
φ�MP /

√
ξ:

U ≈ λ∗φ
4

4N2
F

(
1 + ξφ2

M2
P

)2

(
φ

µ0

)− 16
19 δ

→ λ∗M
4
P

4N2
F ξ

2

(
φ

µ0

)− 16
19 δ

.
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Figure 5: The non-minimally coupled potential for δ=0.1, NF=10, ξ=1/6 [17].

Having introduced a new parameter, there is a wide range of them giving
really accurate results as shown at Fig.6. It also allows us to choose δ << 1.
We can also calculated initial and final values of field (B.3 Fig11)and number
of flavours dependent on δ and ξ (B.3 Fig.12).

Figure 6: Full dots refer to the conformal coupling choice for ξ=1/6 and the
stars to ξ=103, while numbers refer to valure of δ [17].
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6 Asymptotic safety in quantum gravity

6.1 Introduction to asymptotically safe inflation - Wein-
berg’s idea

Asymptotically safe theories are ultraviolet complete and may be applied to
physics of very short distances, in particular the early Universe. Steven Wein-
berg has suggested [4] that the cosmological inflation may be governed by an
asymptotically safe theory.
Starting with a completely general generally covariant effective action with an
ultraviolet cutoff Λ:

IΛ[g] = −
∫
d4x
√
−det g

[
Λ4g0 (Λ) + Λ2g1 (Λ)R+ g2a (Λ)R2+

+g2bR
µνRµν + Λ−2g3a (Λ)R3 + Λ−2g3b (Λ)RRµνRµν + . . .

]
Every possible Riemann curvature tensor truncation is contained in ". . . ". Pa-
rameters gn are dimensionless, hence they satisfy Renormalization Group Equa-
tions:

Λ
dgn
dΛ

= βn(g(Λ)).

The condition for a fixed point in gn = gn∗ is βn(g∗(Λ)) = 0 for all n. In the
context of the inflation, a metric of interest is a general FRW metric. Thanks
to the symmetries of the FRW metric the classical 10 Einstein equations may
be reduced to one differential equation:

NΛ = IΛ −H
∂I
∂H

+ (−Ḣ + 3H2)
IΛ

∂Ḣ
+H

d

dt

(
IΛ

∂Ḣ

)
+ · · · = 0.

In case of the inflation the Hubble parameter is constant and NΛ simplifies. The
equation for H(t) = H̄:

0 = −g0(Λ) + 6g1(Λ)(H̄/Λ)2 − 864g3a(Λ)(H̄/Λ)6 − 216g3b(Λ)(H̄/Λ)6 + . . . .

We may find the solutions at a scale at which the couplings approach their
fixed points. We choose such a cut-off of Λ, that the radiative corrections are
minimized Λ ∼ H̄. The classical solutions to the de Sitter Universe describe
Eternal Inflation. A more realistic model would remain close to the de Sitter
solution and after time 1/H̄ it would gradually end the inflation. By considering
the perturbations of the Hubble parameter around H̄:

H(t) = H̄ + δH

one finds, that the equations of motion indeed predict the exit from the infla-
tionary regime. The perturbations δH are of the form:

δH ∼ exp
{(
ξH̄t

)}
.

For the positive real part of ξ instability increases, ending inflation after time
1/ξ. This result shows a pathway that may be followed in constructing the
inflationary model from the general asymptotically safe theory of gravitation.
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6.2 Platania’s realisation
Asymptotic safety is a theory based on the existence of a non-gaussian fixed
point in the renormalization group in the ultraviolet limit. Renormalization
provides us with a scale-invariant, dimensionless, finite coupling constant in
high energies. Asymptotically safe models allow to avoid the primordial sin-
gularity as the gravitational interactions weaken in high energies. The Planck
mission, of which the goal is the research on anisotropies in the cosmic mi-
crowave background, is supposed to gather data needed to constrain models of
the early Universe, including the cosmological constant and Newton’s constant
[1].

The inflation occured in planckian scales, therefore under high energies and
densities conditions. In this scale the effective action is dependent on the non-
gaussian fixed point. In the Einstein-Hilbert truncation running Λk and gk:

{
gk = g∗c

1
1( 1
MPl

)−θ1 + c2e
2
1( k
MPl

)−θ2

λk = λ∗c
1
1( 1
MPl

)−θ1 + c2e
2
1( k
MPl

)−θ2
(2)

are the parameters of the action, given by [11]:

SEH =

∫
d4x
√
−g 1

16πgk
(R− 2Λk). (3)

In the fixed point the scale setting condition [11] is:

k2 =
R

4Λ∗
. (4)

The relationship between running constants and the fixed point [11] is given
by:

{
gk = g∗

k2

Λk = Λ∗k2.
(5)

Thus, the action in the fixed point can be described as:

S∗grav =

∫
d4x
√
−g R2

128πg∗λ∗
. (6)

θi are the critical exponents, containing the way the renormalization group
trajectories emerge from the non-gaussian fixed point [10].

The slow roll inflation conditions depend on the scalar field potential energy
V (φ) and are given by:
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{
ε(φ) = 1

2κ ( V (φ)
V ′(φ) ) << 1

η(φ) = 1
κ (V

′′(φ)
V (φ) ) << 1.

(7)

The dominance of the scalar field’s potential determines inflation. Violation
of this condition (ε = 1) results at the end of this period. If the violation is
never satisfied, the eternal inflation occurs.

Figure 7: Slow roll inflation scalar field potential for various critical exponents
θi, which determine the dynamics of exponential inflation.

In the Einstein frame the scalar potential is given by:

V (φ) = V∗ + δV (φ), (8)

where V (φ) is a variation of the scalar potential and V∗(φ) is the non-gaussian
fixed point potential:

V∗(φ) = 8πg∗λ∗M
4
Pl. (9)

The mass scale is dependent on the non-gaussian fixed point potential:

m2

M2
Pl

=
4

3
V∗(φ). (10)

Coupling the gravitaional action with a scalar field φ in the Einstein frame
[12] results in obtaining:
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Sgrav = S∗grav =

∫
d4x
√
−gE(

RE
16πG0

+
1

2
gµνE ∂µφ∂νφ− V (φ)) (11)

The family of scalar potential function is shown on the Figure 8. On the upper
chart there is shown the dynamics in the V−(φ), on the lower one - V+(φ).

V± =
m2e−2

√
2κ
3 φ

256κ

{
192(e

√
2κ
3 φ − 1)2 − 3α4 + 128Λ −

−
√

32α[(α2 + 8e
√

2κ
3 φ − 8)± α

√
α2 + 16e

√
2κ
3 φ − 16]

3
2−

− 3α2(α2 + 16e
√

2κ
3 φ − 16)∓ 6α3

√
α2 + 16e

√
2κ
3 φ − 16

} (12)
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Figure 8: Scalar field potential in the Einstein frame.

7 Conclusions
The idea behind AS in quantum gravity is to describe a fundamental theory
of quantum gravity by invoking the Wilsonian renormalization group, and con-
struct its phenomenology by considering the theories emanating from the NGFP.
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Results presented in section 5 show, that indeed inflation driven by AS particle
theory is a viable scenario. A more complicated, non-minimal case gives us
a better fit and greater freedom, but still, both ways are possible. Both lead
to remarkably high numbers of flavors and colors (Fig.10, Fig.12), way beyond
current knowledge. In this model, gravity has a somehow limited role and one
should think about more complex settings. For example, considering asymptot-
ically safe gravity, it might be possible to get a unified interacting fixed point of
gravity and matter. We should also investigate the "red ball" behavior in the
non-minimal coupled case. It is also possible to perform calculations in other
regimes.

In paragraph 6.2. we have shown that the inflation’s process is determined
by the scalar field’s potential. The dynamics of the expansion depends on the
critical exponents, which describe the way of emergence of the renormalization
group trajectories from the fixed point. Violation of the dominance of the scalar
field’s potential condition leads to the end of inflation. In some of the models
this violation is never satisfied, resulting in the eternal inflation.

References
[1] A. Bonnano, F. Saueressig, "Asymptotically safe cosmology - a status re-

port", Comptes Rendus Physique, 2017

[2] A. Eichhorn, "An Asymptotically Safe Guide to Quantum Gravity and Mat-
ter", Frontiers in Astronomy and Space Sciences, 2019

[3] S. Weinberg, "Critical Phenomena for Field Theories", Plenum Press, 1978

[4] S. Weinberg, "Asymptotically Safe Inflation", Physics Review D, 2010

[5] J. Kwapisz, "Conformal standard model and inflation”, 2017

[6] D. I. Kaiser, "Conformal Transformations with Multiple Scalar Fields", 2010

[7] A. A. Starobinsky, "A new type of isotropic cosmological models without
singularity", Physics Letters B, 1980

[8] F. B. M. Shaposhnikov, "The Standard Model Higgs boson as the inflaton",
Physics Letters B, 659 (2007), p. 703–706.

[9] D. H. Lyth and A. Riotto, "Particle physics models of inflation and the
cosmological density perturbation", Phys. Rept., 314 (1999), pp. 1–146.

[10] A. Platania, "From Renormalization Group Flows to Cosmology", Frontiers
in Physics, 2020

[11] S. Domazet, H Štefančić, Renormalization group scale-setting from the
action—a road to modified gravity theories", Classical and Quantum Gravity,
2012

21



[12] A. Bonnano, A. Platania, "Asymptotically safe inflation from quadratic
gravity", Physics Letters B., 2015

[13] A. D. Linde, "A new inflationary universe scenario: a possible solution of
the horizon, flatness, homogeneity, isotropy and primordial monopole prob-
lems", Physic Letters, 1981

[14] A. H. Guth, "Inflationary universe: A possible solution to the horizon and
flatness problems", Physical Review D, 1982

[15] D. F. Litim and F. Sannino, "Asymptotic safety guaranteed", J. High Energ.
Phys., 2014

[16] D. F. Litim and M. Mojaza and F. Sannino, "Vacuum stability of asymp-
totically safe gauge-Yukawa theories", J. High Energ. Phys., 2016

[17] N. N. Grønlund, F. Sannino, and O. Svendsen, "Inflation from asymptoti-
cally safe theories", Phys. Rev. D, 2015

[18] P. A. R. Ade and other, "Planck 2015 results", Astronomy & Astrophysics,
2016

Appendices
A Jordan and Einstein Frame

A.1 One Field Case
We will work in D space-time dimensions our metric has
signature (−,+,+,+,+, ...). We take the Christoffel symbols to be

Γλµν =
1

2
gλσ[∂µgσν + ∂νgσµ − ∂σgµν ], (13)

and the Riemann tensor to be

Rλµνσ = ∂νΓλµσ − ∂σΓλµν + ΓηµσΓλην − ΓηµνΓλησ (14)

The Ricci tensor and Ricci curvature scalar follow upon contractions of the
Riemann tensor:

Rµν = Rλµλν (15)

R = gµνRµν (16)

In the single-field case the action is given by

S =

∫
dDx
√
−g
[
f(φ)R− 1

2
gµν∇µφ∇νφ− V (φ)

]
(17)
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We will assume that f(φ) is positive definite. The frame in which f(φ) 6=
constant appears in the action, as in Eq. (5), is often referred to as the Jordan
frame. We will assume natural units (c = ~ = 1) and take the metric tensor,
gµν , to be dimensionless. We may further parametrise

MD−2
(D) ≡

1

8πGD
(18)

in terms of a (reduced) Planck mass in D dimensions. We may make a conformal
transformation of the metric, defined as

ĝµν = Ω2gµν (19)

We assume that Ω(x) is real and therefore that Ω2(x) is positive definite. Note
that we have not made a coordinate transformation; the coordinates xµ remain
the same in each frame. From equation (7), we immediately see that

ĝµν =
1

Ω2(x)
gµν (20)

√
−ĝ = ΩD(x)

√
−g (21)

Upon making the transformation of equations (8)-(9), one may compute the
Christoffel symbols and the Ricci curvature scalar in the new frame. One finds

Γ̂αβγ = Γαβγ +
1

Ω

[
∆α
β∇γΩ + ∆α

γ∇βΩ− gβγ∇αΩ
]

(22)

R̂ =
1

Ω2

[
R− 2(D − 1)

Ω
�Ω− (D − 1)(D − 4)

1

Ω2
gµν∇µΩ∇νΩ

]
, (23)

where

�Ω = gµν∇µ∇νΩ =
1√
−g

∂µ[
√
−ggµν∂νΩ] (24)

One must be careful to specify whether one is taking derivatives with respect to
the original metric, gµν , or the transformed metric, ĝµν because the Christoffel
symbols transform in Ω-dependent ways under the transformation of equations
(8)-(9). Using Eqs. (7) - (12), we may rewrite the first term in the action,
involving R:∫

dDx
√
−gf(φ)R =

∫
dDx

√
−ĝ

ΩD
f(φ)

[
Ω2R̂+

2(D − 1)

Ω
�Ω−

(D − 1)(D − 4)
1

Ω2
gµν∇µΩ∇νΩ

]
(25)
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Let us look at each of these terms in turn. The first term on the right hand side
becomes ∫

dDx
√
−ĝ
[(

f

ΩD−2

)
R̂

]
(26)

To obtain the canonical Einstein-Hilbert gravitational action in the transformed
frame, we identify

ΩD−2(x) =
2

MD−2
(D)

f [φ(x)] (27)

We may integrate the second term on the right hand side of equation (13) by
parts. Note that the operator � acting on Ω is defined in terms of the original
metric, gµν , rather than the transformed metric. Using Eqs. (8),(9), (12) and
(15), we find∫

dDx
√
−ĝ 2(D − 1)

ΩD+1
f�Ω =∫
dDx

√
−ĝ(D − 1)(D − 3)MD−2

(D)

1

Ω2
ĝµν∇̂µΩ∇̂νΩ (28)

Recall that xµ is unaffected by the conformal transformation, so that ∂̂µ = ∂µ.
Because the covariant derivatives in equation (16) act only on scalar functions,
we have ∇µΩ = ∂µΩ, and hence ∇̂µΩ = ∇µΩ. The last term on the right hand
side of equation (13) is∫

dDx
√
−ĝ(D − 1)(D − 4)

(
f

ΩD+2

)
gµν∇µΩ∇νΩ =∫

dDx
√
−ĝ 1

2
(D − 1)(D − 4)MD−2

(D)

1

Ω2
ĝµν∇̂µΩ∇̂νΩ (29)

Combining Eqs. (12), (15), and (16) we find∫
dDx
√
−gf(φ)R =

∫
dDx

√
−ĝM

D−2

2
f(φ)

[
R̂−

(D − 1)(D − 4)
1

Ω2
ĝµν∇̂µΩ∇̂νΩ

]
(30)

The gravitational portion of the action now includes a canonical Einstein-Hilbert
term. For this reason, the frame corresponding to ˆgµν is often referred to as the
Einstein frame.
We may next consider how the scalar field’s kinetic and potential terms in the
action transform under gµν → ĝµν . We have∫

dDx
√
−g
[
−1

2
gµν∇µφ∇νφ− V (φ)

]
=∫

dDx
√
−ĝ
[
−1

2

1

ΩD−2
ĝµν∇̂µφ∇̂νφ− V̂

]
(31)
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where we have introduced a transformed potential,

V̂ ≡ V

ΩD
(32)

The full action of Eq. (5) may then be written∫
dDx

√
−ĝ

[
MD−2

(D)

2
R̂− 1

2
(D − 1)(D − 2)MD−2

(D)

1

Ω2
ĝµν∇̂µΩ∇̂νΩ

−1

2

1

ΩD−2
ĝµν∇̂µφ∇̂νφ− V̂

]
(33)

Upon substituting f for Ω using Eq. (15), the action in the transformed frame
becomes∫

dDx
√
−g

[
MD−2

(D)

2
R̂− (D − 1)

(D − 2)
MD−2

(D)

1

f2
ĝµν∇̂µf∇̂νf−

1

4f
MD−2

(D) ĝ
µν∇̂µφ∇̂νφ− V̂

]
(34)

In the single-field case, we may next rescale the field, φ → φ so that the new
scalar field in the transformed frame has the canonical kinetic term in the action
of Eq. (22). We define φ̂ such that

− 1

2
ĝµν∇̂µφ̂∇̂ν φ̂ = −

MD−2
(D)

4f
ĝµν

[
∇̂µφ∇̂νφ+

2(D − 1)

(D − 2)

1

f
∇̂µf∇̂νf

]
(35)

We assume

dφ̂

dφ
= F (φ) (36)

in terms of some as-yet unspecified function F . In the single-field case, we also
have f = f(φ), so that equation (22) yields

F (φ) =

(
dφ̂

dφ

)
=

√
MD−2

(D)

2f2(φ)

√
f(φ)

2(D − 1)

(D − 2)
[f ′(φ)]2 (37)

where primes denote derivatives with respect to φ. In terms of the rescaled field,
the action of equation (22) may be written∫

dDx
√
−g
[
f(φ)R− 1

2
gµν∇µφ∇νφ− V (φ)

]
=∫

dDx
√
−ĝ

[
MD−2

(D)

2
R̂− 1

2
ĝµν∇̂µφ̂∇̂ν φ̂− V̂ (φ̂)

]
(38)

The action in the second line now has both the canonical Einstein-Hilbert form
for the gravitational portion as well as the canonical kinetic term for the scalar
field.
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A.2 Two field analysis
Let φ1 φ2 be scalar fields coupled to gravity, for D dimensions we have the
following action:∫

dDx
√
|g|
[
−f(φ1, φ2)R+

1

2
δijg

µν∇µφi∇νφj − V (φ1, φ2)

]
(39)

The steps of the transformation for the gravitational part are exactly the same
and gives,∫

dDx
√
|g|f(φi)R =

∫
dDx

√
|g|
[

1

2
R̂− 1

2

(D − 1)

(D − 2)

1

f2
ĝµν∇̂µf∇̂νf

]
, (40)

where

∇̂µf = (∇̂µφi)f,i (41)

The scalar part transforms similarly:∫
dDx

√
|g|
[

1

2
δijg

µν∇µφi∇νφj − V (φ1, φ2)

]
=∫

dDx
√
|ĝ|
[

1

4f
δij ĝ

µν∇̂µφi∇̂νφj − V̂
]

(42)

So finally the action becomes:∫
dDx

√
ˆ|g|
[
−1

2
R̂+

(D − 1)

(D − 2)

1

f2
ĝµν∇̂µf∇̂νf

− 1

4f
δij ĝ

µν∇̂µφi∇̂νφj − V̂
]

(43)

There arises a question whether there is such a field transformation that gives
canonical kinetic term structure. Let us rewrite the action in terms of metric in
field space Gij .∫

dDx
√
|g|
[
−R+

1

2
Gijjgµν∇µφi∇νφj − V (φ1, φ2)

]
, (44)

with

Gij =
1

2f
δij +

(D − 1)

(D − 2)

1

f2
f,if,j (45)

The necessary condition for the conformal transformation: Gij → Ĝij = δij to
exist is that all the Riemann tensors coefficients vanish. Let us first rescale Gij :

Ĝ〉| = 2fGij = δij +
2(D − 1)

(D − 2)

1

f
f,if,j (46)
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then
R̂

takes the following form:

R̂ =
2(D − 1)(D − 2)

L(φ)

(2ff11f22 − f2
,1f,22 − f2

,2f,11 − 2f,12(ff,12 − f,1f,2)), (47)

where

L(φi) =

[
(D − 2)f + 2(D − 1)

∑
i

f2
,i

]
(48)

We denote φ1 = φ and φ2 = χ and take f(φ, χ) as:

f(φ, χ) =
1

2
[MD−2 + ξφφ

2 + ξχχ
2] (49)

We obtain:

L(φ, χ)R̂ = 2(D − 1)(D − 2)ξφξχM
D−2 (50)

therefore we see that, for D > 2 only if M = 0 one can find such a conformal
transformation that would bring both the gravitational and kinetic terms into
canonical form. This implies a further condition on ξi, namely:

ξφφ
2 + ξχχ

2

MD−2
� 1 (51)

to obtain the canonical Einstein and kinetic term.

B Asymptotically Safe Theory

B.1 Potential of Asymptotically Safe Theories
Let us recall that AS theory can be formulated as:

Rep (SU(NC)) = {H} ⊂M(NF ×NF ,C),

δ =
NF
NC
− 11

2
,

Hii =φ/
√

2NF ,

where we consider such a limit of NF - number of flavours and NC - number of
colours, that δ > 0 is a constant parameter and φ is our field along the diagonal
of H. Potential for an AS theory is given by [16]:

ViUVFP =
λ∗φ

4

4N2
F (1 +W (φ))

(
W (φ)

W (µ0)

)
,

λ∗ = δ
16π2

19

(√
20 + 6

√
23−

√
23− 1

)
,
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where W (φ) := W (z(φ)) is a Lambert function, the solution of equation below:

z(µ) = WexpW,

z(µ) =

(
µ0

µ

) 4
3 δα

∗ (
α∗

α(µ0)
− 1

)
exp

(
α∗

α(µ)− 1

)
,

α∗ =
26

57
δ +O

(
δ2
)
,

α(µ) =
α∗

1 +W (µ)
,

where α∗ is a gauge coupling at UV fixed point and α(µ0) is the same coupling
at a reference scale µ0. Now we may consider a renormalisation with k ∈ R+,
eg. k = 1

2 :

α0 =
α∗

1 + k
=

2α∗

3
,

α(µ) = α∗ + (α(µ0)− α∗)
(
µ

µ0

)− 104
171 δ

2+O(δ3)
,

lim
φ/µ0→∞

W (φ) = k

(
φ

µ0

)− 104
171 δ

2

.

Finally:

lim
φ/µ0→∞

ViUVFP =
λ∗φ

4

4N2
F

(
φ

µ0

)− 16
19 δ

.

B.2 Additional plots for minimally coupled case

Figure 9: The solid lines are calculated using the complete expression for the
potential. The dashed lines show the leading order in δ [17].
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Figure 10: NF as a function of δ based on amplitudes of scalar perturbations
measured by Planck. For δ=0.8, NF = 873009, NC = 138573.

B.3 Additional plots for non-minimally coupled case

Figure 11: Initial (dashed-line) and final (solid-line) values of the inflaton field in
the Jordan frame as function of the non-minimal coupling for δ = 0.01 [17][18].
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Figure 12: δ-dependence on NF for different values of the non-minimal coupling
obtained by constraining the model to provide the observed amplitude of density
perturbations [17].
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